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ABSTRACT

Seismic anisotropy, if not accounted for, can cause signifi-
cant mispositioning of the reflectors in depth-migrated im-
ages. Accounting for anisotropy in depth migration requires
velocity analysis tools that can estimate the anisotropic
background velocity field. We extended wave equation mi-
gration velocity analysis to deal with 2D tilted transverse
isotropic media. The velocities were obtained automatically
by nonlinear optimization of the focusing and stack power of
common-image point gathers constructed using an extended
imaging condition. We used the elastic two-way wave equa-
tion to reconstruct the wavefields needed for the image and
gradient computations. This led to an anisotropic migration
velocity analysis algorithm based on reverse-time migration.
We illustrated the method with synthetic and field data
examples based on marine surface seismic acquisition.
The results showed that the method significantly improves
the quality of the depth-migrated image. However, as is
common in the case of velocity analysis using surface seis-
mic data, the estimation of anisotropic parameters seems to
be strongly nonunique.

INTRODUCTION

Wave equation migration velocity analysis (WEMVA) can be de-
scribed as a nonlinear least-squares inversion of prestack seismic
reflection data in the image domain (Sava and Biondi, 2004).
The procedure consists in setting up an objective function that
can measure the misfit in the image domain due to a prestack depth
migration with a nonoptimal velocity model and then minimizing
this function with respect to the velocity parameters. The objective
function for WEMVA is typically based on the focusing of
common-image point gathers (CIGs) (Symes and Kern, 1994; Shen
et al., 2003), stacking-power (Toldi, 1989; Chavent and Jacewitz,

1995), or a combination of both (Mulder, 2008; Shen and Symes,
2008). The procedure can be made fully automatic, and it is, to a
certain extent, robust against poor initial guesses of the velocity
field (Shen and Symes, 2008). But due to the assumptions of
prestack depth migration, WEMVA is restricted to kinematic inver-
sion of single scattering reflection data (Mulder and van Leeu-
wen, 2008).
A vertically transverse isotropic (VTI) model can be a good

approximation to some horizontally or nearly horizontally layered
sequences (Levin, 1979; Banik, 1984; Sayers, 1994). But for tec-
tonically deformed geologic settings, such as fold thrust belts or the
flanks of salt diapirs, a tilted transverse isotropic (TTI) model is a
better approximation (Isaac and Lawton, 1999). A general 2D TTI
medium can be described by five spatially varying parameters:
(1) the P-wave velocity along the symmetry axis VP0, (2) the S-wave
velocity along the symmetry axis VS0, Thomsen (1986) parameters
(3) ε and (4) δ, (5) and the tilt θ of the symmetry axis with respect to
the vertical. However, some assumptions can be used to reduce the
number of parameters needed to describe the kinematics of the
medium. In the context of P-wave velocity analysis, Tsvankin
and Thomsen (1994) and Alkhalifah and Larner (1994) demonstrate
that VS0 can be arbitrarily chosen. Also, a popular assumption, often
referred to as structural transverse isotropy (STI), further reduces
the number of parameters by assuming that θ is always perpen-
dicular to the structure of the reflectors (Audebert et al., 2006).
Most implementations of WEMVA are based on the acoustic iso-

tropic approximation (Sava and Vlad, 2008). However, in cases
where the velocity field is anisotropic, velocity analysis under an
isotropic assumption will ultimately lead to images that are well
focused but mispositioned in space (Isaac and Lawton, 1999). In
an attempt to overcome this problem, some research implement
WEMVA under anisotropic assumptions. Li and Biondi (2011) pro-
pose a method based on the depth-oriented extension of the differ-
ential semblance objective function (Shen et al., 2003) and one-way
wave equation migration in a VTI medium. Li et al. (2012) also
present a method based on a similar objective function, but using
the pseudoacoustic two-way wave equation for a VTI medium
(Alkhalifah, 1998). Weibull et al. (2012) present a method where
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they use an objective function based on the depth-oriented exten-
sion of differential semblance combined with stacking-power
maximization (Toldi, 1989) and elastic reverse-time migration
(RTM) to estimate anisotropic parameters over a VTI medium.
In this paper, we extend WEMVA to deal with a 2D TTI model of

the subsurface and test it on synthetic and field surface seismic data.
To account for anisotropy in the kinematics of wave propagation,
we use a density-normalized elastic wave equation that is stable and
accurately propagates waves at all angles, which is important for the
estimation of anisotropic parameters. We use WEMVA to simulta-
neously estimate VP0, ε, and δ. The parameter VS0 is assumed to
have a negligible influence on P-wave propagation and is chosen
arbitrarily. In addition, θ is assumed to conform to the geology
and is estimated from the structure of the reflectors in the migrated
image.
A major difficulty in the estimation of anisotropic velocities from

the kinematics of surface reflection data is the inherent nonunique-
ness related to the positioning of the reflectors in the subsurface
and/or to the trade-off between the different parameters (Vestrum
et al., 1999; Grechka et al., 2002). The trade-off between hetero-
geneity and anisotropy can, in principle, be reduced by considering
the images in vertical time instead of depth, as suggested by Alkha-
lifah et al. (2001) or by considering a stretched depth axis as in
Plessix and Rynja (2010). In this work, we use regularization to
constrain the models to a physical set, and a coarse bicubic B-spline
grid to confine the models to a sparse solution space. These mea-
sures help to obtain a convergent WEMVA algorithm, but they are
not sufficient to obtain a unique geologic model of the subsurface.
In practice, substantial additional information in the form of well
logs and check-shot surveys are required to narrow down the range
of possible solutions to the problem (Yan et al., 2004; Bakulin
et al., 2010).
This paper starts by explaining the method and showing what

can be expected in the ideal condition. The method is then tested
on 2D synthetic and field data sets. Next, we discuss the main re-
sults and suggest potential ways forward. Finally, we present our
conclusions.

2D TTI RTM

The basis for WEMVA is prestack depth migration. To build
CIGs for velocity analysis, we use RTM with an extended imaging
condition (Rickett and Sava, 2002):

Rðx; hÞ ¼
Z

ds
Z

dtWsðx − h; t; sÞWrðxþ h; T − t; sÞ;
(1)

where Ws are the forward-modeled source wavefields; Wr are the
reverse time modeled receiver wavefields; x ¼ ðx; zÞ are the spatial
coordinates, with z being the depth axis; h ¼ ðhx; 0Þ is the subsur-
face horizontal half-offset; t is the time; and s is the source index.
The computation of the Ws and Wr wavefields depends on the

choice of the wave equation. To take anisotropy into account, an
anisotropic wave equation must be used in the reconstruction of
the wavefields. We model the wave propagation in a 2D TTI
medium using a density-normalized elastic wave equation (Ikelle
and Amundsen, 2005):

∂2ui
∂t2

ðx; tÞ − ∂
∂xj

�
aijklðxÞ

∂ul
∂xk

ðx; tÞ
�
¼ Fiðx; tÞ; (2)

where ui is the displacement field, aijkl is the density-normalized
elasticity tensor, Fi is a source term, and i; j; k; l ¼ x; z are indexes
under the Einstein summation convention. The elastic wave equa-
tion and the density-normalized elastic parameters aijkl are de-
scribed in more detail in Appendix A.
To obtain the Ws and Wr wavefields using equation 2, we first

model the displacement vector wavefields, usi and uri , according to
the following equations:

∂2usi
∂t2

ðx; tÞ − ∂
∂xj

�
aijklðxÞ

∂usl
∂xk

ðx; tÞ
�
¼ ∂S

∂xi
ðxs; t; sÞ; (3)

and

∂2uri
∂t2

ðx; tÞ − ∂
∂xj

�
aijklðxÞ

∂url
∂xk

ðx; tÞ
�
¼ ∂P

∂xi
ðxr; T − t; sÞ;

(4)

for the source and receiver displacements, respectively. In equa-
tion 3, S is the source time function for source s, at location xs.
Whereas in equation 4, P is the time-reversed recorded seismic re-
flection data for source s at receiver positions given by xr. Also,
note that equation 3 is to be solved forward in time, while equation 4
is to be solved in reverse time.
We then extract a scalar wavefield from the source and receiver

displacement wavefields by taking the divergence of the displace-
ment vector scaled by the density-normalized bulk modulus:

Wsðx; t; sÞ ¼ V2
P0ðxÞ

∂usi
∂xi

ðx; t; sÞ; (5)

and

Wrðx; t; sÞ ¼ V2
P0ðxÞ

∂uri
∂xi

ðx; t; sÞ: (6)

Here, the divergence operator acts to attenuate the S-wave modes
present in the elastic wavefields and thus produces approximate
P-wave scalar wavefields. While this operation perfectly separates
P- and S-waves in 2D isotropic media, in anisotropic media, be-
cause the polarizations of P- and S-wave modes are nonorthogonal,
some S-wave modes leak into the resulting scalar wavefields
(Dellinger and Etgen, 1990). However, the residual S-waves are
generally of small amplitude. In addition, due to the large difference
in phase velocity between the P- and S-waves, the latter tend to
“stack out” during imaging, where the phase velocities of the
P-waves are used. For these reasons, the divergence operator is a
cheap and effective operator for PP imaging. A better separation
can be achieved by designing spatially variant operators based
on the solution of the Christofel equation, but at a much higher com-
putational cost (Yan and Sava, 2011).
Note that, different from the pseudoacoustic approximation of

Alkhalifah (1998), equation 2 requires VS0 to be provided. How-
ever, if only the kinematics of P-wave propagation are considered,
the S-wave velocities are of minor importance (Alkhalifah and
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Tsvankin, 1995). In this work, the S-wave velocities are heuristi-
cally chosen to be 0.9 km∕s and are spatially invariant.

WEMVA

We quantify a misfit in the prestack depth-migrated image using
the same objective function that Shen and Symes (2008) describe.
The objective function consists of a combination of the depth-
oriented extension of differential semblance optimization (Shen
et al., 2003) with stack-power maximization (Toldi, 1989; Chavent
and Jacewitz, 1995; Zhou et al., 2009). The objective function can
be written as

J ¼ 1

2

����h ∂R∂z ðx; hÞ
����
2

−
γ

2

���� ∂R∂z ðx; 0Þ
����
2

¼ 1

2

Z
dx

Z
dhĥ

�
∂R
∂z

ðx; hÞ
�
2

; (7)

where ĥ ¼ h2 − γδðhÞ, with δ being the Kronecker delta and γ
being a constant weight that balances the contribution of differential
semblance and stack power to the total value of the objective func-
tion. The spatial derivative operator ∂z attenuates the low vertical
wavenumber components in the RTM image (Guitton et al.,
2007). This helps to improve the stability and convergence proper-
ties of WEMVA using the two-way wave equation (Mulder, 2008;
Weibull and Arntsen, 2011). We use the vertical derivative operator
for its simplicity and robustness. There are more sophisticated
noise-reducing imaging conditions available, which also attenuate
horizontally oriented noise, as well as better preserve vertical reflec-
tors (Douma et al., 2010; Whitmore and Crawley, 2012).
In addition to quantifying the misfit in the CIGs, we use regu-

larization to constrain the parameters to a feasible set and also to
prevent excessive roughness in the solution (Tikhonov and Arsenin,
1977). The regularization is implemented by adding the following
term to the objective function:

J R ¼
α1
2

����∂VP0

∂xi
ðxÞ−∂V0

P0

∂xi
ðxÞ

����
2

þβ1ðxÞ
2

kVP0ðxÞ−V0
P0ðxÞk2

þα2
2

���� ∂ε
∂xi

ðxÞ−∂ε0

∂xi
ðxÞ

����
2

þβ2ðxÞ
2

kεðxÞ− ε0ðxÞk2

þα3
2

���� ∂δ
∂xi

ðxÞ−∂δ0

∂xi
ðxÞ

����
2

þβ3ðxÞ
2

kδðxÞ−δ0ðxÞk2;

(8)

where V0
P0, ε

0, and δ0 represent initial values of the target param-
eters and αn and βn, with n ¼ 1; 2; 3, being constant weights, one
for each spatially varying parameter.
One limitation of the objective function given by equation 7 is

that it is strictly valid under the single scattering assumption. Be-
cause multiples and primaries will focus at different velocities in the
CIGs, the presence of multiples will introduce local minima in the
objective function. One of the simplest solutions to this problem is
to include multiple attenuation as a part of the preprocessing of the
data used for velocity analysis and use absorbing boundary condi-
tions at all sides for the source and receiver wavefield reconstruc-
tions. In case multiple attenuation fails, there are other approaches
that might be useful. Mulder and van Leeuwen (2008) propose to

reduce the influence of the low-velocity free-surface multiples by
modifying the objective function with an asymmetric weighting
function. Another proposed method consists in modeling and sub-
tracting the multiples as a part of the velocity analysis (van Leeuwen
and Mulder, 2008).
To check the sensitivity of the objective function to the param-

eters VP0, ε, and δ, we evaluate the objective function in a simple 1D
three-layer model, as shown in Figure 1a. In a first stage, we used
this acoustic model to simulate surface seismic data using a split-
spread geometry with a maximum offset of 1.4 km. We used a mo-
nopole point source, consisting of a Ricker pulse with dominant
frequency of 15 Hz. No free surface was used in the modeling.
The preprocessing of the data was limited to muting the direct wave
and wide angle reflections. The resulting data are shown in
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Figure 1. Model and data used to generate the sensitivity plots in
Figure 2; (a) 1D velocity model. (b) Synthetic shot gather modeled
using the model in (a). (c) Shot gather in (b) after mute to remove
direct wave and postcritical reflections.
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Figure 1b and 1c. The data are virtually single scattering and there-
fore ideal within the assumptions of the method. Next, we perturbed
the magnitude of the true parameters in the second layer for differ-
ent values of VP0, ε, and δ and migrated the data. In this procedure,
only one parameter is perturbed at each time, leaving the other
parameters set at their true value. The tests were conducted two
times, one time with θ fixed to 0°, and a second time with θ
fixed at 45°. We then used the resulting images to compute the
objective function values for three different combinations of the
misfit functions: For stack power alone, for differential semblance
alone, and for the combination of stack power and differential
semblance.
The results in Figure 2 show a comparison of the variation of the

values of the different objective functions for each parameter.
Figure 2a–2c shows the results with θ fixed at 0°, while
Figure 2d–2f shows the results with θ fixed at 45°. What this ideal-
ized experiment shows is that the misfit functions are quasiconvex
for a wide range of model perturbations, and they can therefore be
suitable for gradient-based optimization. Another fact shown is that,
in this ideal case, if all but one parameter are known precisely, the
unknown parameter can be uniquely determined. Within the Thom-
sen’s parameters, the objective functions are more sensitive to errors
in ε than they are to errors in δ. The effect of having the wrong θ
model is largest for δ than it is for ε. And because the test
model is isotropic, the sensitivity to the choice of θ is zero for
the VP0 tests.

Gradient computation

To minimize the objective function, we use an L-BFGS method
(Byrd et al., 1995; Nocedal and Wright, 2000). This method re-
quires the evaluation of the objective function and its gradient with
respect to the parameters at each iteration or line search step. We
compute the gradient of equation 7 using the adjoint state method
(Lions and Magenes, 1972; Chavent and Lemonnier, 1974; Plessix,
2006). This method gives the following equations for the gradients
with respect to VP0ðxÞ, εðxÞ, and δðxÞ:

∂J
∂VP0

ðxÞ ¼
Z

ds
Z

dt
∂aijkl
∂VP0

ðxÞ ∂u
s
l

∂xk
ðx; t; sÞ ∂ ~u

s
i

∂xj
ðx; T − t; sÞ

þ
Z

ds
Z

dt
∂aijkl
∂VP0

ðxÞ ∂u
r
l

∂xk
ðx; T − t; sÞ ∂ ~u

r
i

∂xj
ðx; t; sÞ

þ
Z

ds
Z

dt2VP0ðxÞ
∂usi
∂xi

ðx; t; sÞ

×
Z

dh
∂2R
∂z2

ðxþ h;hÞWrðxþ 2h; T − t; sÞ

þ
Z

ds
Z

dt2VP0ðxÞ
∂uri
∂xi

ðx; T − t; sÞ

×
Z

dh
∂2R
∂z2

ðx− h;hÞWsðx− 2h; t; sÞ; (9)
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d)Figure 2. Objective function value computed from
migrating the data in Figure 1c using the model in
Figure 1a modified by perturbations in (a) VP0,
(b) ε, (c) δ. Panels (d-f) are similar to (a-c) but with
θ set to 45°. The DS corresponds to the differential
semblance misfit function, while the SP corre-
sponds to stack power, with c being a constant
added so that the minimum of −SP is equal to
the minimum of DS.
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∂J
∂ε

ðxÞ ¼
Z

ds
Z

dt
∂aijkl
∂ε

ðxÞ ∂u
s
l

∂xk
ðx; t; sÞ ∂ ~u

s
i

∂xj
ðx; T − t; sÞ

þ
Z

ds
Z

dt
∂aijkl
∂ε

ðxÞ ∂u
r
l

∂xk
ðx; T − t; sÞ ∂ ~u

r
i

∂xj
ðx; t; sÞ;

(10)

and

∂J
∂δ

ðxÞ ¼
Z

ds
Z

dt
∂aijkl
∂δ

ðxÞ ∂u
s
l

∂xk
ðx; t; sÞ ∂ ~u

s
i

∂xj
ðx; T − t; sÞ

þ
Z

ds
Z

dt
∂aijkl
∂δ

ðxÞ ∂u
r
l

∂xk
ðx; T − t; sÞ ∂ ~u

r
i

∂xj
ðx; t; sÞ:

(11)

Note that because we scale the divergence of displacement vector by
the density-normalized bulk modulus V2

P0, the gradient with respect
to VP0 (equation 9) has two additional terms in the right-hand side,
when compared to the formula for the other gradients (equations 10
and 11).
The adjoint state wavefields ~usi and ~uri can be computed by the

following adjoint modelings:

∂2 ~usi
∂t2

ðx; tÞ − ∂
∂xj

�
aijklðxÞ

∂ ~usl
∂xk

ðx; tÞ
�
¼ ∂As

∂xi
ðx; T − t; sÞ

(12)

and

∂2 ~uri
∂t2

ðx; tÞ − ∂
∂xj

�
aijklðxÞ

∂ ~url
∂xk

ðx; tÞ
�
¼ ∂Ar

∂xi
ðx; t; sÞ; (13)

where As and Ar are given by

Asðx;t;sÞ¼V2
P0ðxÞ

Z
dhĥ

∂2R
∂z2

ðxþh;hÞWrðxþ2h;T− t;sÞ;
(14)

and

Arðx; t; sÞ ¼ V2
P0ðxÞ

Z
dhĥ

∂2R
∂z2

ðx − h; hÞWsðx − 2h; t; sÞ:
(15)

The adjoint sources ∂As∕∂xi and ∂Ar∕∂xi represent, respectively,
the source- and receiver-side displacement residuals. These resid-
uals are obtained by taking the kernel of the derivatives of the ob-
jective function with respect to the displacement wavefields usi and
uri . Because the displacement wavefields usi and uri are originally
shifted by, respectively, þh and −h, a shift with opposite sign
must be applied to the objective function prior to taking the
respective derivatives. This explains why As have dependencies
in xþ h and xþ 2h and Ar have dependencies in x − h and
x − 2h. For example, in the case of the source side, we have
∫ dx∫ dh∂2R

∂z2 ðx;hÞWsðx−hÞWrðxþhÞ¼∫ dx∫ dh∂2R
∂z2 ðxþh;hÞWsðxÞ

Wrðxþ2hÞ. The same argument can be used for the receiver side.

Finally, note that equation 12 is to be solved in reverse time and
equation 13 is to be solved forward in time.
If regularization is applied, the gradients of equation 7 with re-

spect to the velocity parameters must be augmented with the gra-
dients of equation 8, which are given by

∂J R

∂VP0

ðxÞ ¼ β1ðxÞðVP0ðxÞ − V0
P0ðxÞÞ

− α1

�
∂2VP0

∂x2i
ðxÞ − ∂2V0

P0

∂x2i
ðxÞ

�
; (16)

∂J R

∂ε
ðxÞ ¼ β2ðxÞðεðxÞ − ε0ðxÞÞ − α2

�
∂2ε
∂x2i

ðxÞ − ∂2ε0

∂x2i
ðxÞ

�
;

(17)

∂J R

∂δ
ðxÞ ¼ β3ðxÞðδðxÞ − δ0ðxÞÞ − α3

�
∂2δ
∂x2i

ðxÞ − ∂2δ0

∂x2i
ðxÞ

�
:

(18)

Velocity preconditioning

To speed up convergence, and to restrict the space of possible
solutions, we precondition the velocity parameters using bicubic
B-splines (Dierckx, 1993)

VP0ðxÞ ¼
X
m

bm1Bm1ðxÞ þ V0
P0ðxÞ; (19)

εðxÞ ¼
X
m

bm2Bm2ðxÞ þ ε0ðxÞ; (20)

δðxÞ ¼
X
m

bm3Bm3ðxÞ þ δ0ðxÞ; (21)

where Bmn are cubic splines defined at predetermined points m ¼
ðmx;mzÞ in a spline grid and bmn are coefficients to be determined
by the velocity analysis. The spacing of the spline grid controls the
sparseness of the solution and can be chosen differently for VP0, ε,
and δ, hence the n ¼ 1; 2; 3 index. We only use B-splines to re-
present the velocity updates. This avoids having to fit the initial
model to a B-spline basis, which would otherwise result in unnec-
essary smoothing.
The B-spline representation is attractive because it allows for lo-

cal velocity variations, while, at the same time, it ensures continu-
ous second-order spatial derivatives. These properties help to obtain
a numerically stable and well-posed velocity analysis algorithm.
In practice, we compute the gradients in Cartesian coordinates

and subsequently transform them to the spline basis

∂J m1

∂bm1

¼
Z

dxBm1ðxÞ
∂J
∂VP0

ðxÞ; (22)

∂J m2

∂bm2

¼
Z

dxBm2ðxÞ
∂J
∂ε

ðxÞ; (23)
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∂J m3

∂bm3

¼
Z

dxBm3ðxÞ
∂J
∂δ

ðxÞ: (24)

Diagonal scaling

One problem associated with the estimation of more than one
parameter at the same time is that the magnitudes of the gradients
with respect to the different parameters can be very different. The
different sensitivities are normally compensated for in a full-New-
ton optimization method, through the scaling given by the inverse
Hessian matrix (Nocedal and Wright, 2000). However, for quasi-
Newton methods, this is not the case. The poor relative scaling
causes the optimization to be dominated by the parameters with
the largest gradient magnitudes. To mitigate this problem, we apply
so-called diagonal scaling (Nocedal and Wright, 2000), where the
optimization variables are related to the bicubic spline coefficients
by a linear coordinate transformation:

b 0
mn ¼

bmn

kn
: (25)

By proper choice of the constants kn for each spline coefficient ar-
ray bmn, we can rescale the gradients because

∂J mn

∂b 0
mn

¼ kn
∂J mn

∂bmn

: (26)

This helps to equalize the contribution of each parameter to the
descent direction and hence simultaneous estimation of all param-
eters. One drawback of this approach, compared to a full-Newton
method, is that the chosen scaling must be fixed at the beginning of

the optimization, and it can only be changed by restarting the opti-
mization as a steepest descent.

Numerical optimization

The organization of the numerical optimization scheme in our 2D
TTI WEMVA implementation is shown in Figure 3. In a first stage,
the L-BFGS algorithm is fed with an initial model (as shown in the
left side of Figure 3), which corresponds to the initial diagonally
scaled B-spline coefficient b 0init

mn . These are typically zero because
we are not fitting the initial models to B-spline coefficients, and
the initial updates are zero. At each iteration or line search step,
the objective function and gradient need to be evaluated. The mod-
eling variables VP0, ε, and δ necessary for the migration and gra-
dient computation are obtained from the optimization variables b 0

mn,
through a two-stage process, as shown in the left of Figure 3. First,
the diagonal scaling is removed by solving equation 25 for the
B-spline coefficients bmn. Then, equations 19–21 are used to evalu-
ate the B-splines. A step-by-step procedure for computing the
objective function and gradient can be described as follows:

1) Construct R and evaluate the objective function, and in this
procedure store the displacements usi and uri for each shot.

2) Perform separately the two adjoint modelings for each shot,
according to equations 12 and 13 to compute, respectively,
the adjoint states ~usi and ~uri , and at each time step use equa-
tions 9–11 to build the gradients.

3) Stack each gradient over all shots to obtain the full gradient.

The computed objective function J must be augmented by the
regularization term J R, as shown in the center of Figure 3. And
the gradients of J with respect to the parameters VP0, ε, and δ
are augmented with the respective regularization gradients, as
shown in the right side of Figure 3. Finally, these gradients are pro-
jected into a B-spline basis using equations 22–24 and diagonally
scaled using equation 26.
The loop is repeated until some convergence criteria is met or a

predetermined number of iterations has been run. At which point,
the optimized parameters b 0opt

mn are output, as shown in the right of
Figure 3.

SYNTHETIC 2D EXAMPLE

The first example of TTI WEMVA is based on the synthetic
velocity model shown in Figure 4. The model is a 2D synthetic
cross section of a North Sea offshore reservoir. The anisotropic
model simulates a 2D TTI medium. This model was used to gen-
erate synthetic seismic data using a finite-difference solution to the
elastic wave equation (Lisitsa and Vishnevskiy, 2010). The geom-
etry of the data consists of a line with minimum offset of 0.15 km
and maximum offset of 5 km. Absorbing boundary conditions were
used to ensure that the data are free from surface-related multiples.
However, interbed multiples and converted waves are still present in
the data.
In this example, as in the next example, we simultaneously es-

timate VP0, ε, and δ. All parameters are optimized over bicubic
B-spline grids with 0.8 km spacing in the lateral direction and
0.2 km in the vertical direction. We assume an initial θ model
and keep it constant over the course of the minimization. In this
case, we use the true θ model, shown in Figure 4d.

Migration and gradient

Figure 3. Organization of the 2D TTI WEMVA algorithm: Beval

and Bproj correspond to, respectively, B-spline evaluation and pro-
jection; S and S−1 refer to, respectively, the forward and inverse
diagonal scaling; b 0init

mn are the initial diagonally scaled B-spline co-
efficients; and b 0opt

mn are the optimized diagonally scaled B-spline
coefficients.
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Regularization consisted in constraining the anisotropic param-
eters ε and δ to be zero at the water layer and positive in the sedi-
ments. The constant α1, controlling the derivative regularization of
the VP0 model, was set so that the value of the regularization was
1% of the total initial objective function value, while α2 and α3 were
set to values 10,000 times larger than that of α1. A taper is applied to
mute the gradient in the water layer, simulating a situation in which
the velocity of the water is known. The maximum frequency of the
data was filtered down to 30 Hz, so that a coarse grid of 0.02 by
0.02 km could be used for modeling and migration.
The starting point for the velocity analysis is an isotropic 1D

velocity model, shown in Figure 5a. The model is constructed from
a single smoothed trace of the true velocity model. The result of

optimization on the parameters after 27 iterations is shown in
Figure 5b–5d. From this figure, we can see that the updated VP0

model is able to partially capture the main background features
of the true VP0 model. On the other hand, the estimated anisotropic
parameters show a strong imprint of the P-wave velocity and a gen-
eral lack of structure. This reveals a strong dependency between the
different parameters, which in this case appears to be a major con-
tributor to the nonuniqueness of the result. Of all parameters esti-
mated, δ seems to be the most poorly constrained. We note that there
is a tendency for δ to be overestimated in the shallow parts of the
model and underestimated in the deeper parts of the model. The
reason for this behavior is twofold. The first reason is the poor sep-
aration between the effects of VP0 and δ on the kinematics of the
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Figure 4. 2D TTI synthetic model of a North Sea
reservoir: (a) VP0, (b) ε, (c) δ, and (d) θ.
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Figure 5. Initial and updated models used for
the 2D synthetic data example: (a) initial VP0
model, (b) updated VP0 model after 27 itera-
tions, (c) updated ε model after 27 iterations,
(c) updated δ model after 27 iterations. The θ
model used in this example is shown in
Figure 4d.
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image. The second reason is related to the poor scaling of the opti-
mization, which causes the objective function to be dominated by
the sensitivity to δ in the shallow parts of the image and by VP0 in
the deeper parts. This means that in the shallow parts of the model, δ
is mainly compensating for the kinematic errors introduced by
an underestimated VP0 and vice versa for the deeper parts of
the model.
Figure 6 shows a comparison of the RTM images produced with

the initial 1D, WEMVA, and true model parameters. The initial im-
age has large mispositionings and is poorly focused due to the in-
accurate initial background velocities. These issues are partially
fixed in the optimized migrated image, which is better focused.
But there are some mispositionings (up to more than 0.05 km)
in the optimized image, in particular below 3 km depth. To help
better compare the spatial positioning of the reflectors in the images,
we have drawn three arrows in fixed positions in the images.
A selection of subsurface offset CIGs constructed using the initial

model, the optimized model, and the true model are shown in

Figure 7a–7c. The figure shows that the energy in the updated CIGs
is now better focused at the zero lag, when compared to the initial
CIGs. A comparison of the true model CIGs with the updated
CIGs reveals that the updated CIGs are slightly mispositioned
(>0.05 km) in depth. The fact that the updated and true models
can produce CIGs that are focused at zero lag, yet with different
spatial positioning, reveals one source of nonuniqueness. This
seems to repeat the generally known fact that, in presence of
anisotropy, focusing of prestack depth-migrated images does not
guarantee a unique positioning of the subsurface reflectors (Isaac
and Lawton, 1999).
Now, we repeat the velocity analysis using the same parameters

as before, but this time we use a fixed VP0 model obtained by
smoothing the true model. The VP0 model is shown in Figure 8a,
and the results of velocity analysis for ε, and δ are shown, respec-
tively, in Figure 8a and 8b. The results show that by adding addi-
tional information, in this case VP0, we can obtain better estimates
of the anisotropic parameters.
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Figure 6. Images constructed using the (a) initial model, (b) opti-
mized model, and (c) true model. Arrows are drawn to help visu-
alize the changes in the spatial positioning of the reflectors.
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Figure 7. CIGs constructed using the (a) initial model, (b) optimized
model, and (c) true model. The black dotted lines mark the position
of the zero subsurface offset. The offsets range between −0.5 and
0.5 km.
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FIELD 2D EXAMPLE

In the next example, we apply the method on a real data set taken
off the North Sea, offshore Norway. The data are originally a 3D
marine data set, from which we extracted a 2D line. The geometry
of the data consists of a line with minimum offset of 0.15 km and
maximum offset of 5 km. The data processing included multiple
attenuation and muting of direct wave, wide-angle reflections
and refractions. The maximum frequency of the data was filtered
down to 30 Hz, so that a coarse grid of 0.02 by 0.02 km could
be used for modeling and migration.
The initial model for the optimization is shown in Figure 9a. It

consists of an isotropic 1D model created by smoothing a well log
of the vertical slowness. Here, we numerically estimate θ from the
initial image, and we keep it constant during optimization. We try to
approximate an STI model of the subsurface, where the symmetry
axis is perpendicular to the dip of the beddings. To estimate the tilt

angle, we first estimate the smallest positive angle between the
spatial gradient of the image and an unitary positive vertical vector.
This can be done using the equation

ϕðxÞ ¼ cos−1

2
6664

���� ∂R∂z ðx; 0Þ
�����

∂R
∂x

2ðx; 0Þ þ ∂R
∂z

2ðx; 0Þ
�

1∕2

3
7775: (27)

To find the sign of the angle, we use the following convention:

θðxÞ ¼
�
−ϕðxÞ if ∂R∂x ðx; 0Þ ≤ 0;
ϕðxÞ if ∂R

∂x ðx; 0Þ > 0.
(28)

To avoid excessive roughness in the estimate of θ, we low-pass filter
the image gradient before computing ϕ and subsequently low-pass
filter θ. The estimated tilt angles are shown in Figure 9b. We can see
that the estimated angles partially capture the general background
trend of the structure in the image. However, some artifacts are ap-
parent, which make the estimate look nongeologic. These appear in
particular at areas where there is a lack of reflectivity or due to the
smearing caused by the smoothing. Because these artifacts are of
small angle magnitude (jθj < 5°), we deem that they should have
a minor or negligible effect on wave propagation.
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Figure 8. Results of 2D TTI WEMVA with a fixed VP0 model
obtained by smoothing the true model: (a) smoothed VP0, (b) ε,
and (c) δ.
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Figure 9. Initial models used for the 2D field data example:
(a) initial VP0 model and (b) θ model overlaid by the initial image.
The tilt angles in (b) are estimated from the reflector dips of the
initial image.
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As in the previous example, the parameters are optimized over a
bicubic B-spline grid with 0.8 km spacing in the lateral direction
and 0.2 km in the vertical direction. Regularization followed the
same guidelines as in the previous example.
The resultant estimated parameters after 47 iterations of 2D TTI

WEMVA are shown in Figure 10. The estimated VP0 model reveal a
nearly 1D plane-layered overburden down to 2 km. Below 2 km, as
expected due to the normal faulted structures, the optimized VP0, ε,
and δ models show more lateral variation.
The migrated images computed with the initial and updated mod-

els are shown in Figure 11, while Figure 12 shows a comparison on
selected CIGs. We can see that optimization locally improves the
focusing of the RTM image. These improvements are marked by
arrows in Figure 11. Also, the energy in the updated CIGs is more
focused at zero offset, as can be seen in Figure 12. However, as in
the synthetic data example, there is some uncertainty about the
positioning of the reflectors in the final image.

DISCUSSION

Prestack depth migration of P-wave surface seismic data in 2D
TTI media using a density-normalized elastic wave equation re-
quires an estimate of the P-wave velocity along the symmetry axis
VP0, the S-wave velocity along the symmetry axis VS0, Thomsen’s
parameters ε and δ, and the tilt θ of the symmetry axis with respect
to the vertical. To reduce the number of parameters, we need to es-
timate; we assume that the kinematics of P-waves are independent
of the choice of VS0 and that θ is structurally conforming, which
reduces the velocity estimation problem to three parameters:
VP0, ε, and δ. Here, we use 2D TTI WEMVA to simultaneously
estimate these three parameters from surface seismic data. The re-
sults show that the method is able to improve the focusing of the
depth-migrated image. However, the synthetic data example clearly
shows that a unique set of anisotropic parameters is not constrained
by the method. There are several contributors to this issue. One of
them is that, over a transverse isotropic medium, focusing of the
prestack depth images does not constrain a unique spatial position-
ing of the reflectors in a depth-migrated image (Isaac and Lawton,
1999; Bakulin et al., 2010). Another reason is the existence of a
strong interdependency between the parameters VP0, ε, and δ
(Alkhalifah and Tsvankin, 1995; Jones et al., 2003). In fact, Alkha-
lifah et al. (2001) show that, under certain conditions, at most two
parameters can be recovered from P-wave seismic reflection data.
Therefore, if the goal is to obtain a geologic model of the subsurface
from surface seismic data, a combination of different methods and
additional information such as well data, must be used to constrain
the updated models to a narrower space of possible solutions
(Alkhalifah and Tsvankin, 1995; Alkhalifah et al., 2001; Yan et al.,
2004; Bakulin et al., 2010).Position (km)
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Figure 10. Optimized models after 47 iterations of 2D TTI
WEMVA: (a) VP0, (b) ε, and (c) δ.
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Figure 11. Images constructed using the (a) initial model and
(b) optimized model. Arrows are drawn at fixed positions in the
images to mark changes in the spatial positioning and focusing.
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The choice of parameterization can be important for the results of
velocity analysis because it changes the scaling of the optimization
problem (Nocedal and Wright, 2000). Here, we use WEMVA to
estimate VP0, ε, and δ. To estimate more than one parameter simul-
taneously using an L-BFGS optimization algorithm, we apply
diagonal scaling. The idea is to approximately equalize the sensi-
tivity of the objective function to the different parameters. This pro-
cedure can be avoided if the parameters have the same units and
vary approximately over the same ranges. It is thus possible
that the parameterization given by VP0, Vh ¼ VP0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ε

p
and

Vn ¼ VP0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2δ

p
, which was suggested by Alkhalifah and Tsvan-

kin (1995), provides a better scaling for the problem. Although we
develop the method using VP0, ε, and δ, it is trivial to change the
parameterization to VP0, Vh, and Vn by substitution of the quantities
on the density-normalized stiffness tensor.
The main difference between isotropic and anisotropic WEMVA

is in the reconstruction of the source and receiver wavefields. Here,
we use a density-normalized elastic wave equation to model the
source and receiver displacement wavefields over 2D TTI media.
We then extract quasi-P wavefields by taking the divergence of
the displacements scaled by the density-normalized bulk modulus.
These wavefields are input to an extended crosscorrelation imaging
condition to create PP CIGs of the subsurface. However, the elastic
wave equation also naturally models S-waves. This opens up the
possibility to apply WEMVA to multicomponent data, which would
allow us to create PP, PS, and SS images of the subsurface (Hokstad
et al., 1998). The 2D TTI WEMVA algorithm we present can be
extended to use all these images, allowing to simultaneously
estimate VP0 and VS0, as well as to improve the accuracy in the

estimation of the anisotropic parameters ε and δ (Tsvankin and
Thomsen, 1995; Grechka et al., 2002).
The WEMVAmethod we present is restricted to single-scattering

reflection data. This is a limitation shared by all methods based on
the image domain, and it prevents us from using valuable informa-
tion contained in refractions and multiple reflections. Data domain
methods based on full-waveform inversion (FWI) can, in theory, use
all information contained in the data (Tarantola, 1984; Virieux and
Operto, 2009; Plessix and Rynja, 2010). On the other hand, for FWI
to converge to the solution, it requires either the presence of a useful
signal at very low frequencies (<4 Hz) or an initial model that is
kinematically close to the solution (Virieux and Operto, 2009).
Combining FWI and WEMVA is nontrivial, because in practice
the two methods have very different restrictions when it comes
to the input data and initial models. However, one possible strategy
is to use WEMVA to create initial models that are kinematically
close enough to the solution and then further refine them
using FWI.

CONCLUSION

We present a WEMVA method based on anisotropic 2D TTI
RTM. To reconstruct the wavefields needed for the imaging condi-
tion, we use a density-normalized elastic wave equation. The
WEMVA method can be used to simultaneously estimate the
parameters VP0, ε, and δ from surface seismic reflection data, using
an objective function consisting of a combination of depth-oriented
differential semblance and stack-power maximization. In this pro-
cedure, the tilt of the symmetry axis with respect to the vertical is
assumed to conform to the initial reflectivity geometry and not up-
dated, and the S-wave velocities are heuristically chosen and also
kept constant.
The method is tested on synthetic and field data. The tests show

that the method is well posed and converges to a model that pro-
duces well-focused images. On the other hand, the results also show
that 2D TTI WEMVA of surface seismic data alone is not sufficient
to constrain a unique anisotropic model of the subsurface. This
means that to obtain a correct positioning of the reflectors in the
subsurface, the method must be complemented with additional
information.
Because we employ the elastic wave equation for wavefield

reconstruction, the method can be easily generalized to any aniso-
tropic medium. Furthermore, the quantities in the stiffness tensor
can easily be transformed to honor other parameterizations than
the one used in this paper.
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Figure 12. CIGs constructed using the (a) initial model and (b) op-
timized model. The black dotted lines mark the position of the zero
subsurface offset. The offsets range between −0.5 and 0.5 km.
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APPENDIX A

2D ELASTIC TTI MEDIUM

We consider the following system describing 2D elastic wave
propagation:

∂tux ¼ ∂xτxx þ ∂zτxz; (A-1)

∂tuz ¼ ∂xτxz þ ∂zτzz; (A-2)

0
@∂tτxx

∂tτzz
∂tτxz

1
A¼

0
@a11 a13 a15

a13 a33 a35
a15 a35 a55

1
A
0
@ ∂xux

∂zuz
∂xuz þ ∂zux

1
Aþ

0
@Sxx

Szz
Sxz

1
A;

(A-3)

where ∂t ¼ ∂
∂t,∂x ¼ ∂

∂x, and ∂z ∂
∂z; ui is the particle displacement vec-

tor; τij is a stress tensor; Sij is an external source tensor; and A ¼
ðaijÞ is the matrix of density-normalized elastic coefficients. This
matrix is obtained from the fourth-order tensor aijkl using the Voigt
notation: xx → 1, zz → 3, and xz → 5 (Winterstein, 1990).
In a 2D TTI medium, A is given by the following elastic coef-

ficients:

a11 ¼ a 0
11cos

4θ þ a 0
33sin

4θ þ 2ða 0
13 þ 2a 0

55Þsin2θcos2θ;
(A-4)

a13 ¼ ða 0
11 þ a 0

33 − 4a 0
55Þsin2θcos2θ þ a 0

13ðsin4θ þ cos4θÞ;
(A-5)

a15 ¼ ða 0
13 − a 0

11 þ 2a 0
55Þ sin θ cos3θ;

þ ða 0
33 − a 0

13 − 2a 0
55Þsin3θ cos θ; (A-6)

a33 ¼ a 0
11sin

4θ þ a 0
33cos

4θ þ 2ða 0
13 þ 2a 0

55Þsin2θcos2θ;
a35 ¼ ða 0

13 þ 2a 0
55 − a 0

11Þsin3θ cos θ; (A-7)

þ ða 0
33 − a 0

13 − 2a 0
55Þ sin θ cos3θ;

a55 ¼ ða 0
11 þ a 0

33 − 2a 0
13 − 2a 0

55Þsin2θ cos2θ
þ a 0

55ðsin4 θ þ cos4 θÞ; (A-8)

where θ is the tilt angle of the symmetry axis with respect to the
vertical and A 0 ¼ ða 0

ijÞ are quantities given by

a 0
11 ¼ V2

P0ð1þ 2εÞ; (A-9)

a 0
13 ¼ ½2δV2

P0ðV2
P0 − V2

S0Þ þ ðV2
P0 − V2

S0Þ2�1∕2 − V2
S0;

(A-10)

a 0
33 ¼ V2

P0; (A-11)

a 0
55 ¼ V2

S0; (A-12)

where VP0 is the P-wave velocity along the symmetry axis, VS0 is
the S-wave velocity along the symmetry axis, and ε and δ are Thom-
sen’s anisotropic parameters.
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